Vertex Detector Options and R&D Requirements

Upgrade DC Meeting
December 11, 2002
Yuji Goto (RIKEN/RBRC)
for the Silicon USG

Strawman design

- Barrel
 - 1 pixel layer and 3 strip layers
- Endcap
 - 4 pixel layers

Strawman design

Barrel

- 1st pixel layer
 - r=2cm, |z|<11.2cm
 - 1.3M channel = 1.3Mbit for 1-bit (binary) readout
- 2nd-4th strip layers
 - r=6, 8, 10cm, |z|<15cm
 - 360K channel = 2.9Mbit for 8-bit readout

R&D Items

- Strip sensor
- Strip readout / Interface with PHENIX
- Hybrid pixel
- Hybrid pixel readout / Interface with PHENIX
- Endcap hybrid pixel
- Bump bonding / Thinning
- Monolithic pixel
- Support frame

• Sensor by Zheng Li (BNL instr. div.)

- Sensor by Zheng Li (BNL instr. div.)
 - DC coupling
 - full depletion at ~80 V capacitance ~10 pF
 - leakage current ~10 nA

- Ladder structure
 - 5 sensors / ladder
 - 12 readout chips / sensor
 - SVX4 or TGV+AMU/ADC
 - cooling
 - SVX4: 3.5 mW/ch x 360 Kch = 1.3 KW
 - SVX4: necessary to decrease leakage current ...
 - cabling
 - Cu (Al) / Polyimide hybrid for low material budget
 - ladder matrrial
 - e.g. CFRP

Status

- $-400 \mu m$ thickness and 250 μm thickness
- wire-bonding (of both Al and Au)
- glues between the sensor and the base board
- leakage current
- VA2 readout chip operation
- test beam at KEK
 - position resolution
 - detection efficiency
 - charge correlation property
 - two track separation efficiency

Fanout

Strip sensor readout / Interface with PHENIX

- Technical options
 - SVX4 chip (preamp + digitized pipeline)
 - AC coupling
 - must take care of accumulated leakage current
 - by frequent reset ? (at the abort gap ?)
 - operation temperature lower than the room temperature ?
 - TGV preamp + AMU/ADC
 - DC coupling
 - output drive capability?
 - local processing or driving the preamp signals on kapton cables
 - readout time ?
 - buffering capability ?

Strip sensor readout / Interface with PHENIX

Technical options

- data management ?
 - FPGA (rad-hard ?) or digital-ASIC ?
 - low power data transmission that avoid using G-Links

R&D

- design concept
- data transmission to the DCM
- list of parts
- build and test a prototype

Strip sensor readout / Interface with PHENIX

- Schedule / Manpower
 - design concept in FY2003
 - ORNL internal funding ?
- Milestones / Decision points
 - secure funding
 - data management and transmission
 - design completion
 - prototype construction
 - prototype testing

CDF-II silicon upgrade for Run-IIB

- Stave
 - ~1.5% radiation length per stave

CDF-II silicon upgrade for Run-IIB

CDF-II silicon upgrade for Run-IIB

Port card

- ALICE1 chip
 - 32 x 256 pixels of 425 mm (z) x 50 mm (rf)
 - size: 13.6 mm x 15.95 mm

- Ladder structure
 - 8 chips/ladder + 1 pilot

- 20 ladders for 1st layer
 - 8192 x 8 x 20 = 1.3 Mchannel

- NA60 pixel detector
 - pixel detector developed at CERN for application in ALICE and LHCb
 - ALICE1LHCb chip: 8192 pixels of 50 μm x 425 μm, radiation hard
 - 16 NA60 specific 4- and 8-chip planes, 10 MHz clk,
 200 ns strobe
 - PCI readout by NA60
 - Linux based DAQ

NA60 pixel detector

- NA60 pixel detector
 - first three 4-chip pixel planes constructed
 - test of vertex spectrometer with 20 and 30 GeV/c Pb beams on Pb targets, preparing for physics run in 2003
 - tracking and vertex reconstruction with pixel planes

Hybrid pixel readout

- ALICE1 chip readout
 - 32 parallel lines, each reads 256 channels serially
 - readout speed: 10 MHz → 25.6 µs/chip
 - data buffer for 4 events
 - PHENIX standard 5 events
 - no data format (header, footer, parity bits, ...)
 - no zero-suppression
 - must be taken care at somewhere (pilot, FEM, or DCM ?)
 - L1 trigger be in timing 5.5 μsec in ALICE
 - 4 μsec in PHENIX OK

Hybrid pixel readout

- ALICE pilot chip multi-chip module (PCMCM)
 - readout 10 chips serially → 256 μs/event in ALICE
 - must 40 or 80 μs/event in PHENIX
 - slow control (via JTAG)
- R&D
 - parallelize readout ?
 - 2 or more pilot chips in a ladder
 - sequential parallel readout
 - ...
 - development of our own pilot chip and/or other FEMs
 - KEK experts are interested in the development
 - data bus is a critical issue

- FEM for hybrid pixel readout
 - data receiver from pixel detector
 - data processor
 - FPGA for flexible data compression and data formatting?
 - data transmitter to the DCM
 - slow controller for setup and monitoring of the pixel detectors
 - CCB (central control board) to separate the slow control?
- FEM for strip readout?
 - same FEM, different receiver

R&D

- FPGA code development with a programmable fake data source
 - readout with the DC-FEM DAQ chain
 - zero-suppression at the FEM?
- transmitter / receiver interface
- fake souce → ALICE pixel prototype
 - slow control system to be integrated in the PHENIX framework
 - slow control at CCB?
- prototype boards of FEM and CCB

- Schedule / Manpower
 - all decisions by end of FY2004
 - 2 MSI students
 - 1 postdoc (1/2 by DOE fund)
 - 1/4 electrical engineer (by DOE fund)

Milestones

- FY2003
 - define pixel-FEM and FEM-DCM interface
 - evaluate use pixel FEM for other PHENIX silicon detectors
 - readout fake data source by DC FEM to DCM
 - develop data processor FPGA code for zero-suppression
 - obtain ALICE pixel prototype
 - implement interface and readout single ALICE pixel-chip
 - adapt slow control to PHENIX framework

- FY2004

- design readout system for central pixel barrel
- decide to build separate CCB or incorporate into FEM
- prototype PHENIX pixel FEM (and CCB)
- test multi pixel-chip ladder with PHENIX FEM (and CCB) prototype

Endcap hybrid pixel

Plan

- utilize the same sensor technology and the same chip that is used for the barrel hybrid pixel
- change the topology to match the endcap requirements

Issues

- increased capacitance load on the readout chip
- sensor pad topology
- routing of control lines
- location of the pilot chip

Endcap hybrid pixel

- Schedule / Manpower
 - begin design modifications in FY2004
 - finish prototyping in FY2005
 - who and where ? answers by the review ...
- Milestones
 - define the technology by the review next year
 - complete prototyping by the middle of FY2005

Bump bonding / Thinning

- Technical options
 - FNAL-led efforts
 - McNC North Carolina / Unitive
 - AIT Hong-Kong
 - CERN-led efforts
 - IZM Berlin
 - VTT Finland

Monolithic pixel

- Technical options
 - epitaxial monolithic detectors by LEPSI
 - float-zone monolithic detectors by Bonn and Munich

Support frame

Technical options

- conceptual design by the engineering team that designed the ATLAS support frame (HYTEC)
- recommendation as to the best technical approach and the areas that need further study and prototyping

Schedule

- conceptual design complete in mid FY2003
 - model concept by the review ... (not the final)
- R&D and prototyping finished by mid FY2005

Support frame

- Mockup of the barrel support structure
 - made by CFPR
 - Precision, strength, deformation and material budget to be measured

